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Abstract—A skyline query searches the data points that are not domi- 

nated by others in the dataset. It is widely adopted for many applications 

which require multi-criteria decision making. However, skyline query 

processing is considerably time-consuming for a high-dimensional large 

scale dataset. Parallel computing techniques are therefore needed to 

address this challenge, among which MapReduce is one of the most 

popular frameworks to process big data. A great number of efficient 

MapReduce skyline algorithms have been proposed in the literature 

and most of their designs focus on partitioning and pruning the given 

dataset. However, there are still opportunities for further parallelism. In 

this study, we propose two parallel skyline processing algorithms using 

a novel LShape partitioning strategy and an effective Propagation 

Filtering method. These two algorithms are 2Phase LShape and 

1Phase LShape, used for multiple reducers and single reducer, respec- 

tively. By extensive experiments, we verify that our algorithms outper- 

formed the state-of-the-art approaches, especially for high-dimensional 

large scale datasets. 

 
Index Terms—skyline query, parallel computing, partitioning strategy, 

MapReduce 

 
1 INTRODUCTION 

Given a large number of data points, a skyline query 
searches for the data points that are not dominated by 
others. A data point dominates another if it is as good or 
better in all attributes and better in at least one attribute   
[1]. The set of data points that are not dominated by other 
data points is called a skyline. Furthermore, the process to 
search the skyline is named skyline queries. For example, a 
customer wants to choose one hotel from many hotels that 
are available near a beach. Each hotel has two attributes: its 
distance to the beach, and its price. A hotel is dominant if no 
other hotel has a smaller distance to the beach nor a price 
equal to or smaller than its price. As shown in Fig. 1, the 
skyline data points are t1, t2, t7, t8, and t12. 

 
 

H. Wijayanto is with Department of Computer Science and Information 
Engineering, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, 
Taiwan 41354, ROC, and Informatics Study Program, Engineering Faculty, 
Mataram University, No. 62, Majapahit Rd., Mataram, Indonesia 83115, 
EMAIL: heri@unram.ac.id. 
W. Wang is with Department of Computer Science and Software En- 
gineering, Auburn University, Auburn, AL 36849, USA. EMAIL: wen- 
luwang@auburn.edu. 
W.S. Ku is with Department of Computer Science and Software Engineering, 
Auburn University, Auburn, AL 36849, USA. EMAIL: weishinn@gmail.com. 
A.L.P. Chen is with Department of Computer Science and Information Engi- 
neering, Asia University, No. 500, Lioufeng Rd., Wufeng, Taichung, Taiwan 
41354, ROC. EMAIL: arbee@asia.edu.tw. 
* corresponding author 
Manuscript received XXX XX, XXXX; revised XXX XX, XXXX. 

The skyline query is a popular approach to derive valu- 
able information in big data. Specifically, skyline queries 
provide an effective mechanism for multi-criteria decision 
making [1], wireless sensor networks [2], and product rec- 
ommendation [3]–[5]. Moreover, it draws the attention of 
researchers to discover efficient algorithms since skyline 
queries are computationally intensive in large scale and high 
dimensional datasets. 

 

 
Fig. 1. Example Skyline 

 
Since first introduced in 2001, skyline problems [1] have 

been  extensively  studied  in  the  literature.  Bö rzsonyi  S.  et 
al., [1] proposed Block Nested Loops (BNL) algorithm to 
determine the skyline data points in a large dataset that 
does not fit in the memory.  This approach was designed  
for a single computer machine. It utilizes a window in the 
main memory and a temporary file in the disk to store 
incomparable data points. The divide and conquer algorithm 
of BNL approach was also proposed and has become the 
fundamental technique that is extended to the MapReduce 
approach today. Basically, it divides the data space into 
grids. Each grid computes skyline data points individually 
then all grids results are merged together to calculate the 
final result. Researchers also introduced varied algorithms 
of skyline queries processing such as Bitmap [6], Sort Filter 
Skyline (SFS) [7], and MBR-Oriented approach [8]. The sky- 
line queries have several variants such as dynamic skyline [9], 
reverse skyline [10], uncertain skyline [11], continuous skyline 
[12], and spatial skyline [13]. 

When the number of skyline points is large, parallel 
skyline evaluation still has an important meaning for mak- 
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ing decisions such as in the market analysis based on the 
resulting skyline points. Based on our best knowledge, this 
problem was first introduced in 2007 by Lin, Yuan, Zhang, 
and Zhang, [14]. Methods were then proposed to select k of 
the skyline points as the most representative skyline points 
to make a decision. Following this work, we [3] proposed  
to select the most k-demanding products from all skyline 
products, which satisfy most customer preferences. In the 
most recent study, Zhou, Li, Yang, and Li [15] find the 
optimal combinations of skyline products for the marketing 
strategy. 

For real-world skyline applications, it is highly possible 
that the skyline operator has to deal with a large-size input. 
The skyline operator is able to refine the data to be used in 
the subsequent analysis. Efficient algorithms and powerful 
computing machines play a significant role in today’s big 
data era. Due to the increasing size and  complexity  of 
data, centralized approaches are no longer appropriate to 
compute skyline queries. As mentioned in [16], the cen- 
tralized approach of skyline processing is not appropriate 
for a large amount of input data because  the  execution 
time increases significantly (up to quadratic) when the 
amount of input data increases. Our experiments also show 
this drawback of the centralized approaches. Therefore, 
researchers tend to develop parallel algorithms for skyline 
processing. Currently, MapReduce framework has become 
the de-facto standard for parallel processing [17]. Generally, 
the MapReduce framework has two phases: map phase and 
reduce phase. First, data are divided into partitions that are 
accessed and managed separately in mapper machines. The 
second phase is the reduce phase that merges the outputs of 
map phase to an integrated output. 

A large number of MapReduce skyline algorithms have 
been published [18]–[26]. Calculating skyline queries in a 
parallel manner has several challenges: data partitioning, 
data pruning, data transferring overhead, and load bal- 
ancing. Improper partitioning technique would inevitably 
cause ineffective pruning and unbalanced work load. Also, 
the data transfer among computer nodes becomes the major 
challenge since the communication cost is expensive in par- 
allel processing. Therefore, it is worth the effort to develop 
an enhanced parallel algorithm to search skyline data points 
in a large dataset based on MapReduce framework. 

Our contributions can be summarized as follows: 

• We propose an LShape partitioning strategy for  sky- 
line query processing that is designed for MapReduce 
framework. In our merge phase, most of the local 
skyline points are identified as the global skyline 
points without extra computation, a sequential merge 
of O(N 2) (N is the size of the union of the local skyline 
points) is avoided; instead, we only need a light merge 
of O(n2) (n << N , n is the number of data points in 
shared data cells). 

• We devise a Propagation Filtering. Taking advantage of 
the properties of LShape partitions, as the filtering ob- 
ject we use skyline points that are found in the locations 
that prune most of the non-skyline points. Especially for 
high-dimensional large size input, our filtering strategy 
is able to avoid more expensive dominance tests, and 
is, thus, more effective in reducing computational cost. 

• We evaluate the performance of the proposed ap- 
proaches by extensive experiments. Our experiments 
show that the number of duplicating cells for multiple 
reducers of the grid partitioning approaches grows ex- 
ponentially when the number of dimensions increases. 
Our two-phase MapReduce skyline algorithm named 

2Phase LShape also suffers from this problem. There- 
fore, we propose another one-phase MapReduce sky- 

line algorithm named 1Phase LShape to avoid this 
problem. 

The rest of this paper is organized as follows. In Section 2 
we discuss the related works that show the literature survey 
of the MapReduce skyline queries processing. We present 
the preliminaries and our proposed algorithms in Section 
3. The results of experiments and analysis are presented in 
Section 4. Future works and conclusion of this study are 
provided in Section 5. 

 
2 RELATED WORK 

The general approaches of implementing MapReduce to 
the skyline queries could be classified into two categories. 
The first category divides the data into partitions based on 
the grid that divides each dimension into several parts. The 
second approach is angle-based partitioning which divides 
the data space into several parts by using vectors which 
contain angle and magnitude. These vectors start from the 
origin and divide the data space based on the angle of the 
vectors. 

The first implementation of MapReduce for skyline 
queries was published by B. Zhang et al., [18] in 2011. These 
algorithms are called by MR-BNL, MR-SFS, and MR-Bitmap. 
Those are the MapReduce implementations of the early cen- 
tralized algorithms that are BNL [1], SFS [7], and Bitmap 
[6]. The first MapReduce grid-based partitioning was also 
presented in this work. It is a MapReduce implementation 
of divide and conqueror in [1]. However, this approach lacks 
strong pruning strategies that are mainly proposed in the 
next approaches. Besides that, the bottleneck problem on 
the reducing phase was identified in this study. 

The next early MapReduce skyline algorithm was pub- 
lished by L. Chen et al., [19] in 2012. It introduced the 
angular partitioning approach. The first step is to translate 
the Cartesian coordinate into a hyperspherical space. Then, 
it separates the data space into sectors according to the 
angular coordinates. Next, each sector performs the BNL 
algorithm [1] in the mapper machine to find the local skyline 
data points. Finally, the reducer merges all skyline data 
points to determine the global skyline data points. 

MapReduce Grid Partitioning based Multiple Reducers Sky- 
line (MR-GPMRS) was proposed by K. Mullesgaard et al., 
[20] in 2014. This approach utilizes many reducer machines 
to avoid the bottleneck of the reducing phase. Actually, K. 
Mullesgaard et al., proposed two algorithms in [20]. Those 
are MapReduce Grid Partitioning based on Single Reducers 
Skyline (MR-GPSRS) and MR-GPMRS mentioned above. 
These two approaches consist of two MapReduce phases. 
In the first phase, MapReduce approach is used to construct 
bitstring where each bit “1” in the string represents a non- 
empty partition and bit “0” for empty partition respectively. 
The bitstring is constructed in column-major or  row-major 
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order. It will be used in the second phase to prune domi- 
nated data points and calculate skyline data points. In the 
second phase, the bitstring is broadcasted to all mapper 
machines. Then, the mapper machines utilize the bitstring 
to determine whether a data point is pruned or kept for   
the local skyline computation. Based on our experiments in 
evaluating the number of partitions, this approach suffers 
from exploding the we called duplicated cells for high 
dimensional data. 

In 2016, J. Zhang et al., [21] proposed a MapReduce 
algorithm that is called Proportional Partition-Aware Filtering 
Partial-Presort Grid-Based Partition Skyline (PPF-PGPS). It is   
a two-phase MapReduce algorithm for a large dataset that 
utilizes both Angle-Based partitioning and Grid-Based par- 
titioning. First, they use Angle-Based partitioning to filter 
the dataset and split the dataset based on the angle of data 
points. In the second phase, each partition is processed in a 
mapper machine which performs Grid-Based partitioning to 
calculate the local skyline data points. Then, the outputs of 
mappers are combined in a reducer machine to compute the 
global skyline. In addition, it sorts the grids to find skyline 
data points in the second phase. However, according to our 
experiments, the filtering approach of the first phase is not 
effective for anti-correlated data. 

Y. Park et al., [22] proposed an approach that is based 
on the Quadtree data structure in 2013 called SKY-MR. This 
approach has better load balancing because the number of 
data points in each partition is expected to be the same.   
The weakness of this this approach is that it needs sample 
data points to construct the Quadtree rapidly. The Sky- 
MR+ algorithm is an improvement of Sky-MR by the same 
authors and was published in 2017 [23]. They improved the 
pruning technique by dominance power filtering and im- 
proved the load balancing. Sky-MR+ has a different method 
to construct the Quadtree. It still needs samples to construct 
the Quadtree. The performance of these two algorithms 
depends on taking the sample data points to construct 
Quadtree. 

J. L. Koh et  al.,  introduced  MR-Sketch  algorithm  [24] 
in 2017. Similar to MR-GPMRS [20], it is a multi-reducers 
approach to address the reducer bottleneck problem. It 
performs distributed dominance test to improve the perfor- 
mance of MR-GPMRS. However, this approach still suffers 
from communication overwhelm because mappers produce 
duplicated local skyline sets and send them to several reduc- 
ers. In other words, the distributed dominance test or DDT 
replicates a partition to several reducer machines. It is not 
efficient because it overwhelms transmission media that are 
expensive in cluster computing. MR-Sketch also performs 
sampling of the data in the first phase. Consequently, if the 
random sampling does not take the proper samples then the 
performance of this algorithm will be decreased. 

The  recent  algorithm  of  MapReduce  skyline queries 
processing was published in 2018 by M. Tang  et al., [25].    
It utilizes Z-Order notation of data points. This approach 
resists data skew and data straggler. The data skew is a 
condition where the partition of the data is unbalanced.      
It becomes a problem in parallel processing because the 
execution time depends on the largest partition. The data 
straggler is a condition where the number of skyline data 
points in a partition is much larger than the others which 

need the longest execution time. The problem in this ap- 
proach is the Z-Order that is only suitable for integer dataset. 
Besides that, this approach needs sampling data to construct 
partitions. It could fail if the sampling step does not take 
the proper sample. Similar to Sky-MR, and Sky-MR+, this 
algorithm performs the reservoir sampling technique that is 
the extension of random sampling. 

Many efficient parallel skyline processing algorithms 
based on MapReduce framework have been proposed [18]– 
[26]. The main work of those approaches is in the par- 
titioning the massive dataset. The pruning strategies are 
developed based on the partitioning method. In general, 
the partitioning strategies are based on the grid and angle. 
The grid-based approaches have the advantage that it is 
easy to avoid load balancing problems. On the other hand, 
angle-based approaches have better pruning power that can 
reduce more unnecessary data points. However, the most 
recent algorithms can be classified into two groups where 
the first is sampling based algorithms and the second is 
non-sampling algorithms. Sampling based algorithms uti- 
lize data samples to construct the partition to avoid load 
balancing problem. However, there is no guarantee that the 
sampling data represent the data distribution correctly. If 
the data distribution is not represented well by the sample 
data, then the performance of the algorithm is also less. The 
algorithms that perform this sampling step are [5], [22], [23], 
[25]. On the other hand, the algorithms that do not perform 
the sampling step are [20] and [21]. The proposed algorithm 
developed in this research is based on the non-sampling 
algorithms namely MR-GPMRS and PPF-PGPS algorithms. 

 
 

3 METHODOLOGY 

This section provides a detailed explanation of our proposed 
algorithm. The preliminary is presented first (Subsection 3.1) 
and followed by our definitions of LShape partitioning con- 
cepts (Subsection 3.2). Subsection 3.3 explains the proposed 

two phases of the MapReduce algorithm named 2Phase 
LShape algorithm. Subsection 3.4 formalizes our algorithms 

developed in this study. The 1Phase LShape algorithm is 
presented in Subsection 3.5. 

 
 

3.1 Preliminaries 

A data point ti in d-dimensional space is denoted by ti = 
(ti,1, . . . , ti,j, . . . , ti,d) where ti,j is the value of the jth 
dimension of ti. We denote D as a set of data points and 

|D| the number of data points in D. 

Definition 1. (Dominating) A data point ti dominates tj 
if   m, ti,m    tj,m, and   n, ti,n < tj,n. It is denoted as  
ti tj and otherwise, ti tj which represents ti does  
not dominate tj. 

 
Definition 2. (Skyline) A data point that is not dominated 

by any other data points in a dataset D is called a skyline 
data point; the set of all skyline data points in D is 

denoted as Skyline = {ti|∀j, j /= i, ti, tj ∈ D, tj /≺ ti} 
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TABLE 1 
Notation Table 

noted  by  dci      dcj ,  and  otherwise,  dci      dcj  which 
represents dci does not dominate dcj . 

Definition 4. (Strongly Dominating of Data Cell) Given two 
data  cells  dci  and  dcj ,  dci  strongly  dominates  dcj  iff 
m, dci.cminm  < dcj .cminm.  It  is  denoted  by  dci 
dcj .  On  the  other  hand,  dcj  is  strongly  dominated  by 
dci. 

Definition 5. (Skyline Data Cells) A skyline data cell is a  
data cell that is not dominated by any other data cells.   
A set of skyline data cells is denoted by SkyCells = 

{dci | ∀j, j i, dci /≺ dcj}. 

 
 
 

 
3.2 Concepts of LShape Partitioning 

In this subsection, we formally define our LShape parti- 
tioning concepts. For better clearly, we provide notation in 
Table 1. 

A conventional grid partitioning strategy divides each 
dimension into a number of equal  intervals.  This  num-  
ber is called partition per  dimension  and  denote  as  ppd.  
As a result, the whole search space is  partitioned  into  
ppdd cells. A cell can be uniquely identified by its 
minimum coordinate denoted by cmin — i.e., cmin = 

(min[1], . . . , min[j], . . . , min[d])  where  min[j] is  the  min- 
imum value of jth dimension in the corresponding cell, 
which is also denoted as cminj. A cell that contains data 
points is called data cell, denoted as dc, and uniquely 
identified by its minimum coordinate dc.cmin. The set of 
all data cells is denoted as DC. We assign each data cell an 
index i as dci for clear presentation. 

As shown in Fig. 2, dc.(60,20) dominates dc.(80,20). The 
dc.(0,20) strongly dominates dc.(20,40)). And, the dc.(0,60), 
dc.(20,40), and dc.(60,20) are the skyline data cells. 
Concepts of LShape partitioning 

With our proposed concept of strongly dominating data 
cells, we guarantee strongly dominated data cells do not 
contain any skyline data points, whose data points are 
dominated by data points in the skyline data cells. However, 
skyline data points may locate in the dominated data cells. 
Our main idea is to focus on dominated but not strongly 

dominated data cells. For example, in Fig. 2, dc.(20, 40) 
strongly dominates dc.(40, 60) and the points in dc.(40, 60) 
(e.g., t15, t25) are pruned. By our definition, dc.(40, 40) is 

dominated (not strongly dominated) by dc.(40, 60), whose 
data points t5, t6 can not be pruned. 

The formalization of an LShape partition is summarized 
as follows. 

(i) We first identify skyline data cells. In Fig.  2, 
SkyCells= dc.(0.60), dc.(20,40), dc.(60,20) (colored in 
red). 

(ii) We define candidate data cells by the set of dominated 
but not strongly dominated data cells DCcandidate 

Fig. 2 shows an example of data cells in R2 Euclidean DCcandidate = DC 
 
dominated − DC  Sdominated 

space, which is partitioned by dividing each dimension into 
5 equal intervals. Taking data point t7(70,30) as an example, 
the corresponding data cell is identified by dc.(60,20). 

 

 
Fig. 2. LShape Partitioning Strategy 

 
Concepts of Data Cell 

Definition 3. (Dominating of Data Cell) Given two data cells 
dci  and  dcj ,  dci  dominates  dcj  iff  ∀m,  dci.cminm   

dcj .cminm  and  ∃n, dci.cminn  <  dcj .cminn.  It  is  de- 

DCdominated = {dci|∃dcs ∈ SkyCells, dcs ≺ dci} 

DCSdominated = {dci|∃dcs ∈ SkyCells, dcs ≺≺ dci} 

In Fig. 2, DCcandidate = dc.(0,80), dc.(20,60), dc.(40,40), 
dc.(60,40), dc.(80,20) (colored in gray). After pruning 
strongly dominated data cells, we have a union of 
SkyCells and DCcandidate. 

(iii) For each skyline data cell dcs SkyCells, we collect 
data cells that belong to DCcandidate and are dominated 
by dcs as a set of candidate cells w.r.t. dcs, denoted as 
Lset(dcs) 

Lset(dcs) = {dci | dci ∈ DCcandidate, dcs ≺ dci} 

(iv) We sort each Lset(dcs) based on Z-order to form a tuple 
L = dc1, dc2, . . . , dcn where dc1 is dcs because dcs is 
the closest data cell to the origin. In general, these data 
cells in L resembles an L-like shape in a 2-dimensional 
space, and we call it an LShape partition. 

An LShape partition L is identified by L’s dc1.cmin 
denoted as L.(dc1.cmin) since dc1 is the only skyline data 
cell in the partition. 

In Fig. 2, there are three LShape partitions with each 
corner cell (skyline data cell) of an LShape partition colored 
by red. The first LShape partition is identified by L1 = 

Symbols Description 
t A data point 
d The dimension of t 
D A set of data points 
dc A data cell 

DC A set of data cells 
cmin The minimum coordinate of a data cell 

Skyline A set of skyline data points 
SkyCells A set of skyline data cells 

≺ Dominating 
 ≺ not Dominating 

≺≺ Strongly Dominating 
 ≺ ≺ not Strongly Dominating 

L An LShape partition 
LS A set of LShape partitions 
ppd partition per dimension 
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( ) L.(0, 60) = dc.(0, 60), dc.(0, 80), dc.(20, 60) . We denote the 
set of L partitions that cover the whole search space as LS. 

A data cell may belong to more than one LShape par- 
tition. In Fig. 2, dc.(20, 60) is a member of L1.(0, 60) and 
L2.(20, 40). We propose an Intersection Data Cell concept 
as follows. 

Definition 6. (Intersection Data Cell) A data cell dc that is a 
member of more than one L partition. ∃ m and n, n /= m, 

dci ∈ Lm and dci ∈ Ln. 

3.3 The 2Phase LShape Proposed Algorithm 

The first phase is the construction of LShape partitions and 
the second phase is the computation of skyline data points 
based on the LShape partitions. The first phase scheme is 
shown in Fig. 3 and the second phase in Fig. 4. 

 

 
Fig. 3. The First Phase of 2Phase LShape Algorithm 

 

In the first phase, the LShape partitions are constructed 
by distinct indices of every data point. Each data point is 
indexed by its corresponding data cell that is dc.cmin. It    
is a light MapReduce job because the data transmitted to 
a reducer are very small. For example, it is similar to the 
grid-based partitioning that divides each dimension into 
ppd equally sized intervals, and the number of the cells is 
ppdd (d is the number of dimensions). However, not all the 
cells contain data points, and only data cells are processed 
in the reducer to construct a set of LShape partitions. 

In detail, the first phase shown in Fig. 3 starts from di- 
viding dataset D into n chunks randomly. Then, each chunk 
is processed in a mapper. A mapper determines each data 
point index. A data point index is a data cell identifier where 
it is located. A mapper only emits distinct data cell identities 
to a reducer. In the other words, only distinct cells that are 
contained data point/points (data cell) are processed in the 
reducer to construct a set of LShape partitions. Next, the 
reducer performs LShapeSetConstruction Algorithm that 
is presented in Algorithm 1 to construct a set of LShape 
partitions. 

The scheme of the second phase is presented in Fig. 4. 
First, a set of LShape partitions produced in the first phase 
is broadcasted to all the mappers. Similar to the first phase, 
dataset D is randomly balanced partitioned into n chunks 
and each chunk is processed in a mapper.  In  this  step,  
data points that are not located in any LShape partitions 
are filtered out. If a data point is a member of an LShape 
partition, it is entered to a data cell in one LShape partition 
or several LShape partitions for the intersection data cells. 
Next, the Propagation Filtering algorithm explained in 
Algorithm 4 is performed to find the skyline data points     
in a particular LShape partition. Each LShape partition 
produced in the mapper step is emitted to a corresponding 

 

 
 

Fig. 4. The Second Phase of 2Phase LShape Algorithm 

 
 

reducer to compute the skyline data points in entire dataset 
D. This reducer also performs Propagation F iltering in 
Algorithm 4. However, the skyline data points produced  
by a reducer still contain non-skyline data points that are 
located in the intersection  data  cells.  Finally,  the  results  
of reducers are combined in a machine and non-skyline 
data points are removed by a light computation explained 
in Lemma 3. It is similar to the MR-GPMRS [20] that 
removes duplicated skyline data points in the final step.     
In the LShape partitioning strategy approach, skyline data 
points in an intersection data cell must be skyline for all  
the LShape partitions which contain this data cell. The 
technique is explained in detail in Subsection 3.4. 

 
 

3.4 The Details of the Proposed Algorithms 

3.4.1 Construction of a set of LShape Partitions 

Construction of a set of LShape partitions is performed   
by the reducer at the first phase. It is not computationally 
intensive since the number of data cells is relatively small 
compared to the number of data points. Assuming each 
dimension is divided into the same number of partition ppd 
then the number of cells is ppdd. 

The reducer collects distinct data cells (without their data 
points) identified from the mappers. The output of this step 
is a set of LShape partitions LS that will be used in the next 
phase. According to Definition 5, the SkyCells is calculated 
based on the input data cells DC where each element of 
SkyCells becomes the first element and it is to be the iden- 
tifier of each LShape partition. This step is shown in Algo- 
rithm 1 in line 1 of LShapeSetConstruction algorithm. The 
elements of an LShape partition are data cells that are domi- 
nated by the skyline data cell but not strongly dominated by 
the skyline data cell (as explained in Subsection 3.2). There- 
fore, all strongly dominated data cells by SkyCells in DC 
are removed in Line 2 of LShapeSetConstruction algo- 
rithm by running removeStronglyDominatedCells func- 
tion. Next, the elements of each LShape partition L are 
determined in line 3 that calls setLShapeMember function. 
This function works as defined in Subsection 3.2 to find 
members of an LShape partition. A data cell that is not 
filtered in line 2 must be at least an element of an LShape 
partition. Furthermore, if it is an element  of  more  than  
one LShape partition, then it is an intersection data cell 
according to Definition 6. Finally, members of each LShape 
partition Lj are sorted by Z-Order (line 4 to 6). 
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Algorithm 1 LShapeSetConstruction Algorithm 

Input: DC 

in D. Based on Lemma 1, dcLi(2 j n) is possible 

to be dominated by other data cell dcLi where k < j. If 
Output: LS dcLi /∈ DCinter then for all tp ∈ dcLi is only possible to 

1: SkyCells = findSkylineCells(DC) 
2: DC = removeStronglyDominatedCells(SkyCells, DC) 
3: LS = setLshapeMember(SkyCells, DC) 
4:   for each L LS do 

5: L = zOrderSort(L) 
6: end for 

   7:   return LS  

 

3.4.2 LShape Partitioning Strategy 

In the second phase, the set of LShape partitions LS is 
broadcasted to all the mappers. The input data D is divided 
into multiple balanced chunks D! and each chunk is pro- 
cessed in a mapper. With the whole set of LShape partitions 
LS, a mapper filters out data points that are not a member 
of any data cell in LS. If a data point is an element of a data 
cell that belongs to an L (L LS), then this data point is 
added to the corresponding data cell. This step is performed 
in Lines 1 to 8 in LshapeMapper algorithm (Algorithm   
2). Then, the mapper performs Propagation F iltering to 
search for the skyline data points in an L. It is operated     
for each L individually that is shown in Algorithm 2 Lines  
9 to 11. Additionally, the Propagation F iltering is also 
performed in the reduce phase to determine the skyline data 
points in D. In this approach, the calculating of skyline data 
points can be performed independently for each LShape 
partition based on Lemma 2 and Lemma 3. 

An important property of Z-order is presented in Lemma 
1 according to [27]. 

Lemma 1. Given an LShape partition L and two data cells 
dci    L, dcj     L, for any data point ti    dci, tj    dcj , if 
dcj is ordered after dci then tj cannot dominate ti. 

Proof. The proof is by contradiction. We assume all 
the data cells in an LShape partition are sorted in Z- 
order based on the closeness of the data cell cmin to the  
origin.  Since  dcj  is  ordered  after  dci,  there  is  at  least a  
dimension  k  s.t.  dcj .cmink  >  dci.cmink.  As  a  result, 
ti, tj  that  ti       dci, tj       dcj ,  we  have  ti,k  >  tj,k.  If 
ti      dci, tj      dcj , tj      ti according  to  the  definition  of 
skyline dominance (Definition 1), ti,k  tj,k which leads to 

a contradiction. Thus, this concludes the proof. □ 

Local skyline data points found in an LShape partition 
cannot be dominated by data points in other LShape parti- 
tions, except those found locally in the intersection data cells. 
It is presented in Lemma 2 as follows. 

Lemma 2. (Independence) In an LShape partition Li, 
SkylineLi is a set of skyline data points found in Li. 
Assuming Li contains a set of intersection data cells 
DCinter , we have DCinter    Li  (dcinter     DCinter).    
The skyline data points found in DCinter are denoted 
as  Skylineinter.  Therefore,  Skyline!   =  SkylineLi  − 

be dominated by other data points tq dcLi where k j. 
Therefore, for any tp Skyline!, it cannot be dominated by 
other data points in D □. 

 

Algorithm 2 LShapeMapper Algorithm 
 

 

Input:  LS, D’ where D’ D. 
Output: key value pairs key, L ; key is the id of L 

LShape filtering 
1:   for each t D’ do 
2: for each L LS do 
3: if t is located in L then 

4: L = add(L,t); add t to a corresponding dc L 
5: Break 
6: end if 
7: end for 
8: end for 

Propagation filtering 
9:   for each L LS do 

10: L = propagationFiltering(L) 
11: end for 

 12:   return   key value pairs (key, L)  

Skyline Data Points in an Intersection Data Cell 
A local skyline data point in an intersection data cell is  

a global skyline data point if and only if it is a skyline data 
point for the union of LShape partitions which overlap with 
the intersection cell. 

Lemma 3. For dcinter DCinter, a data point tj is skyline 
data point in D if tj is determined as skyline data point 

in all Ln where dcinter ∈ Ln. 

Proof. Based on the proof of Lemma 2 and that dcinter 
is dominated by each skyline data cell dcLn for all Ln 
where dcinter Ln, then, a data  point  tj  dcinter  is 
probably dominated by data point tk from any Ln where 

dcinter ∈ Ln. Therefore, skyline data points in dcinter have 

to be skyline data points in all Ln where dcinter ∈ Ln □. 

 

Fig. 5. Example Intersection Data Cell 

 

Fig. 5 shows two LShape partitions in two dimensional 

Skylineinter, tn ∈ Skyline!, tn ∈ SkylineLj, Lj 

and Lj ∈ LS. 

Li, 
space, L1 and L2. The dc.(10, 30) is an intersection data 
cell because it exists in two LShape partitions. Based on 
Lemma 2, we can be determine the skyline data points in 

Proof. Based on Definition 5, the skyline data cell of Li each LShape partition individually. The skyline data points 
is dcLi (Li = (dcLi, ..., dcLi)), and the skyline data points that result in L2 are t10, t3, and t5. The skyline data points 

found in dcLi are not dominated by any other data points that result in L1  are t14, t5, t1, t11, t17, and t13. When these 
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two LShape partitions are combined, additional selection 
is needed in the intersection data cell dc.(10, 30). Skyline 
data points in this data cell must be skyline data points in 
both LShape partitions. In this case, since t5 is available in 
both L1 and L2 then t5 is the skyline data point and t14 is 
removed. 

We formally provide a policy to merge partitions as 
follows: 

(Partitions Merge Policy) We iterate each Li in an LS. The 
first data cell in Li is the skyline data cell and it is directly 
added to the final result without checking. We then iterate 
data cells from the second to the last. If the cell is not    
an intersection data cell, it is added to the final result. 
Otherwise, the skyline data points in this data cell must 
satisfy Lemma 3. After that, we add this intersection data 
cell to the final result and delete this intersection data cell in 
other LShape partitions. 

 

Algorithm 3 mergeLStoR Algorithm 
 

 

Input: set of LShape partition LS, the number of reducers R 
Output: set of LShape partition groups LG 

1:  for each Li LS do 
2: Gi = Li 
3: add Gi to LG 
4: end for 
5: while LG > R do 
6: Gf =find G with the smallest number of cells in LG 
7: remove Gf from LG 
8: Gs=find G with the smallest number of cells in LG 
9: remove Gs from LG 

10: newG=combine Gf and Gs 
11: add newG to LG 
12: end while 
13: return LG 

 
 

 
To have the balanced load for reducers, Algorithm 3 

merges a set of LShape partitions into R groups, which 
represents the number of reducers. Line 1 to 4 initializes a set 
LG of groups of the LShape partitions. Initially, each group 
contains one LShape partition. The process of merging the 
LShape partitions starts for finding the first and the second 
smallest  groups  Gf  and  Gs  that  is  done  on  Line  6 and 
8. Determining the smallest group is based on the total 
number of data cells contained in the LShape partitions   
in the group. Line 7 and 9 remove the  selected  groups  
from LG. Then, Gf and Gs are combined to newG by 
merging all LShape partitions of the two groups. Because 
the LShape partitions are combined, there is no duplicated 
intersection cell in a group. The newG is added to LG in 
Line 11. The process from Line 6 to 11 is repeated until the 
number of LG is equal to or less than R. The detailed 
process of merging two or more LShape partitions follows 
the Partition Merge Policy that is explained in this Subsection. 

 
3.4.3 Propagation Filtering 

The outline of the Propagation F iltering is presented as 
follows: 

• Starting from the skyline data cells, we traverse the rest 
of the data cells iteratively in Z-Order. 

• When evaluating a data cell (non-skyline data cell), it 
is divided into two-levels checking: data cell and data 
point. 

• In data cell level checking, we follow Lemma 4 that not 
all the data cells need to be compared. 

• In data point level, we only keep data points that have 
a dimension smaller than all the skyline data points 
found in previous data cells. 

• We find skyline data points in this data cell by BNL 
algorithm. 

 

 
Fig. 6. Example of Propagation Filtering in 2-dimensional space 

 

Similar to [21], our filtering technique runs on the Z-order 
sorted grids. This filtering is performed in an LShape parti- 
tion to find skyline data points. An example of Propagation 
F iltering for 2-dimensional data is illustrated in Fig. 6. 
First, all data cells on an LShape partition are sorted based 
on Z-order. Therefore, the skyline data cell will be processed 
first, then followed by the data cells that are located nearest 
to the skyline data cell. In the example of Fig. 6, the order  
of data cells being processed is dc.(10, 10), dc.(20, 10), 
dc.(10, 20), dc.(30, 10), dc.(10, 30) ; dc.(10, 10) is the skyline 
data cell. First, the Propagation F iltering starts from the 
skyline data cell that is shown in Fig. 6(a). In this specific 
example, the result is two skyline data points from the 
skyline data cell dc.(10, 10) that are t1 and t2. Then, based 
on the result from the skyline data cell, we evaluate the 
subsequent data cells that are closest to the skyline data cell, 
which are dc.(20, 10) and dc.(10, 20). However, based on 
Lemma 4, we do not need to evaluate all the data points    
in the subsequent data cells. In data cell dc.(20, 10), we 
only need to consider data points whose y dimension is less 
than t2’s y dimension. Similarly, in data cell dc.(10, 20), we 
only need to evaluate the data points whose x dimension   
is less than t1’s x dimension. Then, the result of this step    
is t3 in data cell dc.(20, 10), and t4 in data cell dc.(10, 20). 
These results are then propagated to data cell dc.(10, 30) 
and dc.(30, 10). Besides that, this approach does not need 
to compare the data points in data cell dc.(10, 20) with 
dc.(20, 10), data cell dc.(10, 20) with dc.(30, 10), data cell 
dc.(30, 10) with dc.(10, 20), or data cell dc.(30, 10) with 
dc.(10, 30) according to Lemma 4. 

Lemma 4. Given data cell dcp.(x1, . . . , xd) and data cell 
dcq .(y1, . . . , yd),  if    i,  j,  i     j,  xi  <  yi  and  xj  >  yj 
then all data points in dcp and dcq are not comparable. 

Proof. If data cell dcp dominates data cell dcq then it 
must satisfy condition   m, dcp.cminm   dcq.cminm, and   
n, dcp.cminn < dcq.cminn. Therefore, k, dcp.cmink > 

dcq.cmink □. 
Pseudo  code  of  Propagation  F iltering  algorithm is 

presented in Algorithm 4, which is executed by mappers 
and reducers repeatedly for each L. The output is another 
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Algorithm 4 PropagationFiltering Algorithm 
 

 

Input: L (L has already been sorted by Z-order) 
Output: L’ (It only contains skyline data points) 

1: L! = ∅ 

starting from the first data cell dc in L (skyline data cell) 
2:   for each dc L do 

3: if L! = ∅ then 
4: for each dc’ L’ do 
5: if needToCompare(dc.cmin, dc!.cmin) then 

6: if dc! = ∅ then 
7: indices = getIndicesToCompare(dc.cmin, 

dc!.cmin) 

 
 

Algorithm 5 needToCompare Algorithm 
 

 

Input: dcA.cmin, dcB.cmin 
Output: Boolean 

1: greater = false 
2: less = false 

d is the number of dimension 
3: for i = 1 to d do 
4: if dcA.cmini < dcB.cmini then 
5: less = true 
6: else if dcA.cmini > dcB.cmini then 

7: greater = true 
8: end if 

8: dc = propagationFilteringItem(dc!,dc,indices) 9: end for 
9: end if 

10: end if 
11: end for 
12: end if 
13: dc = skylineBNL(dc) 
14: L! = add(L!,dc) 
15: end for 

16: return L! 
 

 

 
LShape partition L! that only contains skyline data points. 
In Line 1, the output of LShape partition is denoted as     
L!, which is initialized as an empty LShape partition. The 
LShape partition L has been sorted by Z-Order, then  it  
will examine each data cell in the LShape partition start- 
ing from the skyline data cell according to Lemma 2 and 
Lemma 1. When evaluating  the  skyline  data  cell,  if  the  
L!  is empty,  then the data points in the skyline data cell  
are processed by BNL algorithm to locate skyline data 
points (line 13). The resultant skyline data points are stored 
in a new data cell dc and it  is  added  to  L!.  Then,  the 
next data cell from the LShape partition is processed and 
compared with the data cells in L!. We need to evaluate the 
necessity of comparison between the data cell dc from L 
and dc! from L! by needToCompare function, according to 
Lemma 4. If comparison is necessary, the attributes indices 
for comparison are determined by getIndicesToCompare 
function. Finally, to find skyline data points in dc, we exe- 
cute propagationFilteringItem function. Then the skyline 
data points are added to L! with the same data cell dc as 

 10: return ¬ (greater ∧ less)  

 
The algorithm to evaluate the necessity of comparison for 
dimensions between two data cells is presented in Algo- 
rithm 6; we record the dimensions where the values are 
equal between two data cells. 

The data points level comparison of data points in two 
data cells is presented in Algorithm 7. We find a dimension 
of a data point in the current data cell (dc in Line 9 of 
Algorithm 4) that is less than a dimension of a data point in 
the other data cell. It previously has been evaluated (dc! in 
Line 9 of Algorithm 4). This technique implements Lemma 1 
that is the property of Z-order. For example, by the previous 

evaluation, the data point t17(22,22) in data cell dc.(20, 20) 
is detected as a skyline data point. Then, when evaluating 

data cell dc.(30, 20), we only need to find a data point where 
the second dimension is less than 22. This mechanism will 
reduce the computation cost for high dimensions of data 
because it does not need to compare all the dimensions and 
only finds one dimension that is smaller. It is shown in Line 
7, 8, and 13 that if a dimension of a data point is less than a 
dimension of all the skyline data points in the previous data 
cell, then this data point is not comparable to all skyline data 
points found in the previous step. This step is done from the 
first data cell to the current data cell of the LShape partition. 
After this filtering is done, the final step in this algorithm is 
to find skyline data points on the current data cell by BNL 
algorithm. This is done in PropagationFiltering algorithm 
in line 14 in Algorithm 4. 

the new data cell. It is repeated until all the data cells in an    

LShape partition are evaluated. 
Algorithm 5 shows the algorithm to determine the neces- 

sity of comparison between two data cells. It works based 
on Lemma 4 that if a dimension x of a data cell dcA.cminx 
is less than dcB.cminx, and another dimension y of data cell 
dcA.cminy is greater than dcB.cminy, then dcA and dcB are 
not comparable. 

We do not need to compare all the dimensions in the 
data point level since the cmin’s dimensions of data cells 
indicate necessity. Taking data cell dc.(20, 20) and data cell 

dc.(30, 20) as an example, we only need to compare the 
second dimension because the first dimension of data points 
in dc.(30, 20) is larger than the first dimension of data 

points in dc.(20, 20). Furthermore, those two data cells have 
already been sorted based on Z-Order, and the skyline data 
points in dc.(20, 20) are calculated first before dc.(30, 20). 
The implementation of this concept is explained in Fig. 6. 

Algorithm 6 getIndicesToCompare Algorithm 
 

 

Input: dcA.cmin, dcB.cmin 
Output:  indices 

1: indices = ∅ 
d is the number of dimensions 

2: for i = 1 to d do 
3: if dcA.cmini = dcB.cmini then 

4: indices i 
5: end if 
6: end for 
7: return indices 

 
 

 
3.5 The 1Phase LShape Algorithm 

As explained in Subsection 3.2, the cells are constructed by 
dividing each dimension of the dataset by an integer num- 
ber ppd. For a smaller number of ppd, we get a larger size 
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Algorithm 7 propagationFilteringItem Algorithm 
 

 

Input: dc, dc!, indices 
where dc is current data cell and dc! is previous data cell 

Output: dc” 

1: dc” =∅ 
2:   for each t dc do 
3: Boolean isSmaller = false 
4: for each t! dc! do 
5: for each index indices do 

6: if tindex < t!
index then 

7: isSmaller = true 
8: Break 
9: end if 

10: end for 
11: end for 
12: if isSmaller then 
13: dc” t 
14: end if 
15: end for 

16: return dc” 
 

 

 
of cells. From our experiments shown in Fig. 13, we can see 
that the best execution time is achieved when ppd=2. This 
is because a smaller cell size produces a higher number of 
LShape partitions, which is then followed by an increased 
number of intersection data cells. Since the intersection data 
cells need to be duplicated to the corresponding LShape 
partitions, it slows down the execution time. The number  
of duplicated intersection data cells increases exponentially 
when the number of dimensions increases. 

One effort to decrease the number of duplicated inter- 
section cells is by merging LShape partitions into a number 
of groups, equal to the number of reducers. Algorithm 3      
is designed to balance the processing time of the reducers. 
However, this effort does not change the result that the best 
execution time is achieved when the ppd=2. In this case, it 
only needs one reducer to find the global skyline points. We 

therefore propose the 1Phase LShape algorithm. 

 

 
Fig. 7. 1Phase LShape Algorithm 

The 1Phase LShape algorithm scheme is illustrated in 
Fig. 7. First, the dataset D is divided into n chunks  and 
each chunk is processed into a mapper by Algorithm 8. It 
constructs a set of data cells DC by dividing data space  

into 2d data cells (note that ppd=2) in Line 1. From Line      
2 to 4, it assigns each data point to the corresponding its 
data cell. Then in Line 5 the LShape partitions are formed 
and strong dominated data cell pruned. Next  in  Line  6, 
the Propagation F iltering is performed to find the local 
skyline data points. Define the closest data cell to the origin 
as origin cell. If the origin cell is not empty then only one 
LShape partition is formed. However, if it is empty then 

the maximum number of the LShape partitions is equal to 
the number of the dimensions. Each mapper then emits the 
LShape partitions to the reducer. 

In this scheme, only one reducer is used because the 
number of LShape partitions is small. Algorithm 9 shows 
the process in the reducer. The cells from each LShape par- 
tition are collected in Line 1 and a new LShape partition is 
constructed in Line 2. This step prunes the strong dominated 
data cell if it exists. Finally, Propagation F iltering is used 
to find the global skyline data points. 

 

Algorithm 8 1PhaseMapper Algorithm 
 

 

Input: A chunk D’ of Dataset D 
Output: A set of LShape partition LS 

1: DC=construct data cells with 2 partition per dimension 
2:  for each ti D! do 

3: assign ti to corresponding data cell C DC 
4: end for 
5: construct LS using Alg. 1 
6: PropagationFiltering(LS) using Alg. 4 
7: return LS 

 
 

 
 

Algorithm 9 1PhaseReducer Algorithm 

Input: LShape partitions LA and LB 

Output: set of LShape partitions LS 
1:  DC=take all cells from LA LB 
2: construct LS using Alg. 1 
3: PropagationFiltering(LS) using Alg. 4 

   4:   return LS  

 

 
4 EXPERIMENTS AND ANALYSIS 

In this section, we present the performance of the LShape 
partitioning strategy algorithm that is compared to the state 
of the art approaches. We generate three types of dataset 
distributions that are generally used in the field of study. 
Those are anti-correlated dataset, independent dataset, and 
correlated dataset. However, the results of the correlated 
datasets are not presented because the results are similar to 
those of the independent datasets. We generate those three 
types of datasets for 10 million to 100 million data points 
and each in 2 dimensions to 10 dimensions. Besides that,  
we generate a real number of datasets in this experiment 
because the real world dataset could be a real number 
instead integer. A real dataset needs larger space in memory 
than integer dataset. The  ZDG+DM  utilizes  Z-Order  that 
is only suitable for integer data. Therefore, the ZDG+DM 
algorithm cannot be implemented to process real number 
datasets. However, the LShape partitioning strategy algo- 
rithm implements Z-Order in the data cell level that uses an 
integer to identify a data cell. 

We  implement our algorithms and state of the art ap- 
proaches of this research, that are MR-GPMRS and PPF- 
PGPS by Java 8 and Apache Spark MapReduce framework 
version 2.2.0. Those algorithms are tested on a Hadoop clus- 
ter on Elastic MapReduce AWS cloud computing service 1 
where  the  maximum  number  of  nodes  in  a  cluster  is 16 

1. https://aws.amazon.com/emr 
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machines. Each node has m4.large machines and each is 2.4 effective for correlated and independent dataset. However, 
GHz Intel Xeon R E5-2676 v3, 2 cores, and 8 GB memory. 

Based on our literature survey, we can classify algo- 
rithms of MapReduce Skyline into two: sampling based al- 

gorithms and non-sampling based algorithms. The 2Phase 

and 1Phase LShape algorithms, PPF-PGPS, and MR- 
GPMRS are classified into non-sampling algorithms. The 

2Phase LShape, PPF-PGPS, and MR-GPMRS are two 
phases parallel MapReduce skyline algorithms. Therefore, 

we compare the performance of 2Phase LShape to the 
same class of skyline MapReduce algorithms: PPF-PGPS 
and MR-GPMRS. These comparations are presented in Sub- 
section 4.1, 4.2, and 4.3. Next, we evaluate the performances 

of 1Phase and 2Phase LShape algorithms in Subsection 
4.4, 4.5, and 4.6. We also present our experiments on the 
sampling effect in Subsection 4.7. 

 
4.1 Varying Data Dimensions 

The purpose of these experiments is to know the response 
time with increasing number of dimensions. Actually, 1M 
data can be processed in a single machine if the number of 
dimensions is low. However, if the number of dimensions 
increases, then the execution time would increase exponen- 
tially, which can not be processed in a single machine. The 
execution time not only depends on the data size but also 
depends on the data dimensions and the data distribution. 
Taking correlated data as an example, the execution time is 
much faster than anti-correlated data. 

The comparisons of execution time of 2Phase LShape 
compared to PPF-PGPS and MR-GPMRS in the varied di- 

mensions are shown in Fig. 8. Fig. 8(a) shows that 2Phase 
LShape partitioning strategy algorithm outperforms the 
PPF-PGPS and MR-GPMRS for anti-correlated dataset. In 
low dimensional data such as 2D and 3D, the differences   
of execution time are not as large as in high dimensional 

dataset. However, the 2Phase LShape still runs faster than 
the two baseline algorithms shown in Fig. 9 when we 
present the comparisons in ranged size of dataset. 

With increasing dimensions, the execution time of PPF- 
PGPS and MR-GPMRS increases exponentially for the three 

types of dataset shown in Fig. 8. However, 2Phase LShape 
has a linear increase of execution time with an increasing 

number of dimensions. It shows that the 2Phase LShape 
and Propagation F iltering are effective in high dimen- 
sional data. 

 

 
Fig. 8. Comparison by Number of Dimensions 

 
The PPF-PGPS does not perform well compared to 

2Phase LShape because of the following reasons.: The 
PPF-PGPS implements Progressive F iltering to reduce 
the number of inputs in the first phase. This filtering is 

the performance of the Progressive F iltering is poor for 
anti-correlated dataset [21]. Furthermore, the data are more 
widely spread in high dimensional data, which hurts the 
filtering performance in the PPF-PGPS. Actually, when the 
number of dimensions increases, we need to add more fil- 
tering objects. This challenge is addressed by Propagation 

F iltering in 2Phase LShape algorithm where the user 
does not need to set the number of filtering objects. Our 
Propagation F iltering technique also selects the filtering 
object from the more effective locations in the search space 

(e.g., skyline data cells). In the 2Phase LShape algorithm, 
the skyline data points that result from processing the 
skyline data cell can be treated as the filtering objects. Those 
filtering objects are used to filter the data points when 
processing the upcoming data cells, and the filtering objects 
are added automatically after processing the current data 
cell. 

The data in the independent dataset are distributed 
evenly across the data space. The number of skyline data 
points in this data distribution is less than anti-correlated 
dataset because there are more data  points  located  near 
the origin in the independent dataset than anti-correlated 
dataset. This condition makes PPF-PGPS filtering technique 
be able to filter more data points. It is shown in Fig. 8(b) that 
for 2D, 3D, and 4D data, the performance of PPF-PGPS is 

similar to 2Phase LShape. However, when the dimension 
is 5 or more, the execution time of PPF-PGPS increases 

exponentially, whereas the 2Phase LShape partitioning 
strategy performs in linear time response. 

 
4.2 Varying Data Sizes 

In this subsection, we evaluate the performance of 2Phase 
LShape compared to the MR-GPMRS and PPF-PGPS in 
ranged data size. We use the fixed dimensions and range 
the data size from 10 million to 100 million. We stop the 
experiment if the difference of execution time is significant. 
Because the response time is much different between MR- 

GPMRS compared to PPF-PGPS and 2Phase LShape, we 
separate it into two charts for independent and correlated 
dataset. 

The execution time of MR-GPMRS and PPF-PGPS in- 
creases exponentially. Therefore, we need to choose a proper 
dimension to evaluate the execution time based on the 
varied data size, otherwise, the execution time between 
algorithms will be a very large difference. Moreover, the 
longest computation time is unacceptable (e.g., weeks) in 
real-life. For anti-correlated dataset, it is shown in Fig. 8.a 

that the performance of 2Phase LShape and PPF-PGPS  
is similar in up to 3-dimensional anti-correlated dataset. 
Here, the MR-GPMRS has fast execution time. Therefore,  
we use 3-dimensional anti-correlated dataset for this ex- 
periment. For the independent dataset, based on Fig. 8.b, 

the execution time of 2Phase LShape, PPF-PGPS, and 
MR-GPMRS is small in 4-dimensional dataset. Moreover, 

PPF-PGPS and 2Phase LShape have similar execution 
time and then PPF-PGPS execution time increases signifi- 
cantly in 5-dimensional independent dataset compared to 

2Phase LShape performance. Therefore, in the indepen- 
dent dataset, we use a 4-dimensional dataset to evaluate the 
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MR-GPMRS, PPF-PGPS, and 2Phase LShape partitioning 

strategy. However, because the performances of 2Phase 
LShape and PPF-PGPS are similar, we use a 5-dimensional 
independent dataset to evaluate these two algorithms. 

 
 

 
Fig. 9. Comparison by Data Sizes for Anti-Correlated Data 

 

For the anti-correlated dataset, the performance of 

2Phase LShape, PPF-PGPS, and MR-GPMRS is shown in 
Fig. 9. We choose 3-dimensional data for this evaluation 

since the performances of 2Phase LShape and PPF-PGPS 
are similar in 3-dimensional data as shown in Fig. 8.a. 
Therefore, we investigate more in this dimension from 10 

million to 100 million data. The execution time of 2Phase 
LShape of the input dataset from 10 to 100 million increases 
slightly. However, the execution time of the other two algo- 

rithms increases dramatically. It shows that 2Phase LShape 
performs much better than the other two. For instance, with 

70 million data, 2Phase LShape runs in 108 seconds (1.8 
minutes), PPF-PGPS runs in 2460 seconds (41 minutes), and 
MR-GPMRS runs in 12960 seconds (3.6 hours). 

 
 

 
Fig. 10. Comparison by Data Sizes for Independent Data 

 
The execution time of algorithms for independent 

dataset is shown in Fig. 10(a)  and  10(b).  As  shown  in  
Fig. 10(a), the performance of MR-GPMRS is worse than 

PPF-PGPS and 2Phase LShape. Fig. 10(b) shows the com- 

parison of 2Phase LShape with PPF-PGPS. Based on these 

observations, the 2Phase LShape algorithm performs bet- 
ter in varied number of data for independent and correlated 
data. However, in the independent dataset, the execution 
time of PPF-PGPS drops significantly when the number of 
data increases such as in Fig. 10(b) on 60M data. In this 
case, data with such distributions benefit from the PPF- 
PGPS filtering process since a large number of data points 
are successfully  removed  during  the  mapper  phase.  As 
a result, the execution time of independent dataset does   
not increase smoothly when input data grows, showing 
that the performance of PPF-PGPS filtering  depends  on  
the distribution of input data [21]. Independent data has 
more probability to be close to the origin. Those data points 
have a large dominating region and are very sensitive to 

the filter process. If those data points are detected early     
in the progressive filtering on PPF-PGPS, then the overall 
execution will be fast. Besides, as mentioned in [21], PPF- 
PGPS performs heuristic to select the best filtering objects. 
It is commonly understood that heuristic algorithm could 
be trapped in the local optima. We found in our experiment 
that PPF-PGPS algorithm has fluctuated increasing execu- 
tion time with the increasing number of data. 

 
 

4.3 Varying Number of Computer Nodes 

The next experiment is the evaluation of algorithms with 
varying number of computer nodes in a Hadoop cluster. 
We select a proper number of dimension and data size 
based on the experiment in Section 4.2 to anticipate a long 
execution time when the number of machines used is small. 
Next, we divide the comparison into two experiments and 
charts because the execution time of MR-GPMRS compared 

to 2Phase LShape and PPF-PGPS is much longer. 

The execution time of MR-GPMRS has a logarithmic 
decreasing trend when the number of machines increases.  
It is shown in Fig. 11(a) and 12(a) that the execution time is 

much higher than that of PPF-PGPS and 2Phase LShape. 

 
 

 
Fig. 11. Comparisons by the number of computer nodes for Anti- 
Correlated Data 

 

In Fig. 11(b) and 12(b), 2Phase LShape also has a loga- 
rithmic decreasing with the increasing number of machines 
but it runs much faster than MR-GPMRS. PPF-PGPS has 
fluctuating execution time in these experiments although 
the trends are also in logarithmic decreasing. Similar to the 
analysis of the previous experiment, fluctuating execution 
time is caused by the data distribution and the choosing    
of filtering objects. The heuristic function may not select   
the best filtering object although the input data are the 
same, since in the first step of the MapReduce framework, 
it divides the data into several chunks according to the 
number of machines. Therefore, with different number of 
machines, the data chunks of the data are also different and 
so are the selected objects. 

Based on the increasing number of executor machines, 

2Phase LShape performs better than PPF-PGPS in the 
anticorrelated data as depicted in Fig. 11(b). As explained 
in Section 4.2, PPF-PGPS performs worse to filter out data 
in the PPF phase for the anti-correlated dataset. In the 
independent dataset dataset, PPF-PGPS performs better 
with small number of machines but when the number of 

machines grows, the execution time of 2Phase LShape 
becomes similar to PPF-PGPS as shown in Fig. 12(b). 
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Fig. 12. Comparisons by the number of computer nodse for Independent 
Data 

 

4.4 Varying Cell Sizes 

The main purpose of these experiments is to know  the 
effect of the number of partitions. Intuitively, a smaller size 
of cells produces  a  larger  number  of LShape partitions. 

It has been explained in Subsection 3.5 to vary the  cell 
sizes. Interestingly, our experiments show that the number 
of duplicated intersection cells increases exponentially when 
the number of dimensions increases, as shown in Fig. 13(a). 

Because the partitioning strategy of our approach is ex- 
tended from the MR-GRPMRS partitioning strategy, our ex- 
periments also show that it also suffers from the explosion of 
duplicated cells. However, the number of duplication cells 

in MR-GPMRS is a little bit higher than 2Phase LShape. 

It is because the 2Phase LShape produces a smaller num- 
ber of partitions than MR-GPMRS as shown in Fig. 13(b). 
Furthermore, the Propagation F iltering proposed in this 

study performs well then the execution time of the 2Phase 
LShape runs is smaller than MR-GPMRS as shown in Fig 8, 
9 and 10. 

Next, in Fig. 13(c) and 13(d), we evaluate the number   

of reducers used for the 2Phase LShape algorithm. These 
experiments show that one reducer is always better. When 
we use ppd = 1, a centralized BNL algorithm is used, and 
the performance is worse than that ppd = 2. In Fig. 13(d), the 
execution time of ppd = 3 increases significantly. By dividing 
each dimension by 3 or other odd numbers, there must be   
a cell located at the center of data space. Generally, data 
points are concentrated on the center of the data space for 
correlated and anti-correlated datasets. Therefore, for ppd = 
3, the cell located at the center of the data space is the most 
populated cell which is not pruned and it is duplicated to 
the correlated LShape partitions. Consequently, the number 
of data processed by mappers and reducers is larger than the 
input dataset and the execution time increases significantly. 
This effect also happens when ppd = 5 although it is not    
as significant. However, when ppd is even or larger than 5, 
the most populated data cell is probably pruned or it is not 
duplicated. 

 
4.5 2Phase and 1Phase LShape Algorithms 

We compare the 2Phase and 1Phase LShape algorithms 
in this subsection. We merge the LShape partitions by 
Algorithm 3 into one group and use one reducer for the 

2Phase LShape algorithm to make it comparable to the 

1Phase LShape algorithm which uses one reducer. We 
use 10 million to 100 million 3-dimensional anticorrelated 
datasets and the result is shown in Fig. 14. Based on this 

 
 
 

 
Fig. 13. Cell Sizes Experiments 

 

experiment, the 1Phase algorithm has a better performance 
than the 2Phase LShape algorithm. It is because 1Phase 
LShape algorithm does not need to construct the LShape 

partitions in the first phase of the 2Phase LShape algo- 
rithm. 

 

 
Fig. 14. 1Phase vs 2Phase LShape approach 

 
 

4.6 Real-World Dataset 

The experiments utilize the real-world dataset HEPMASS 2. 
It is a dataset used in high-energy physics experiments for 
machine learning to find the signature of exotic particles. To 
find the exotic particles, Baldi, Cranmer, Faucett, Sadowski, 
and Whiteson [28] use  a  parameterized  neural  network  
to classify a new particle. In atomic reaction in quantum 
physics, when an elementary particle named quark collides 
a particle, it produces energy and new particles. Because the 
number of the new particles explodes in the atomic reaction, 
the dataset for this research is very large. It is interesting    
to find the dominating particles such that researchers can 
prune a large number of particles dominated by others. 

This dataset includes 3 tables each containing 10.5 mil- 
lion records with 28 attributes. The amount of data is 
relatively small compared to our synthetically dataset, and 
we vary the number of attributes and the number of com- 

puter nodes used to find the performance of the 1Phase 
LShape algorithm. We perform two experiments in real- 
world datasets. The first evaluates the varying number of 
computer nodes, i.e. 3, 4, 8, 12, and 16 computer nodes.   
The second observes the varying number of dimensions of 
the dataset, i.e. the first 3, 4, ..., and 10 dimensions. The 
results are shown in Fig. 15(a) and 15(b). In Fig. 15(a), we 

 
2. https://archive.ics.uci.edu/ml/datasets/HEPMASS 
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see that the best execution time is achieved when there are 8 
computer nodes used. When there are more than 8 computer 
nodes used, the execution time increases slightly because it 
needs more data transfer among the nodes. Fig. 15(b) shows 
an exponential increase of the execution time for increasing 
number of dimensions of the HEPMASS dataset using 8 
computer nodes. 

 

 
Fig. 15. Real-World Dataset 

 
 

4.7 Effectiveness of Sampling 

Our decision to develop a non-sampling parallel skyline 
algorithms is based on the experiments on the effectiveness 
of the sampling strategy. We implemented a random sam- 
pling method commonly used in the field named Reservoir 
Sampling. Our experiment to evaluate the effectiveness is 
as follows. First, we generate a fixed size of dataset D in 
three data distributions. Second, we take asamples S from 
1% to 10% of the dataset D. Third, to measure the effec- 
tiveness of the sampling, we find skyline points Sky of the 
sample S and filter out the dataset D by Sky. The set of the 
remaining data points after the filtering is called F . Finally, 

we calculate the effectiveness ratio by ( D F )/ D . The 
results are shown in Fig. 16. It can be seen that the sampling 
is only effective for higher dimensions for correlated dataset, 
and it is less effective for the independent dataset, and worst 
for the anticorrelated dataset. The results are shown in Fig. 
16. As is shown in Fig. 16(c) the effectiveness of sampling   
is above 80% for the 1% sampling of a 10-dimensional 
correlated dataset. For the independent dataset, Fig. 16(b), 
the effectiveness drops to around 50% for the 10% sampling 
of 10-dimensional dataset. In Fig. 16(a), the effectiveness for 
the anticorrelated dataset drops to below 30% for all the 
experiments. 

 

5 CONCLUSION AND FUTURE RESEARCH 

In this study, we have presented our work on the parallel 
Skyline queries processing based on MapReduce frame- 

work. We introduced a new partitioning strategy that is 
called by LShape partitioning strategy, a variant of grid 

based partitioning. The LShape partitioning strategy has 
the advantage that we can utilize new filtering method that 

is called Propagation F iltering. The LShape partitioning 
strategy and Propagation F iltering work better than the 

state of the art of our approach, MR-GPMRS and PPF- 
PGPS which are  the  non-sampling algorithm approaches. 

It is shown in our intensive experiments for anti-correlated, 
independent, and correlated dataset that the performance 
becomes better in high dimension and high number of data. 

Future research based on MapReduce skyline process- 
ing can be divided into categories as follows. The first is 

improving the existing algorithms to become more efficient 
with more balanced partitioning, increasing the pruning 
power, and reducing the communication overhead among 
the mappers and reducers. The second of the future re- 
search is the study of the MapReduce skyline queries in 
the variants of skyline queries such as dynamic skyline, 
reverse skyline, uncertain skyline, and continuous skyline. 
Each variant of skyline queries needs further technique to 
process the data because not all variants are composable. 
And the third is the utilization of the MapReduce skyline 
queries for multi-criteria decision making in real dataset to 
find valuable information in many fields such as health, 
transportation, economics, and others. 
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